BetVictor Sports(伟德体育)国际官网(访问: hash.cyou 领取999USDT)
“总的来说,我们获得的最大收益来自更好的数字表示,”Dally告诉工程师。这些数字代表神经网络的关键参数。其中一个参数是权重——模型中神经元与神经元连接的强度——另一个参数是激活——将神经元加权输入的总和相乘,以确定它是否激活,从而将信息传播到下一层。在 P100 之前,Nvidia GPU 使用单精度浮点数字表示这些权重。由IEEE 754 标准定义,它们的长度为 32 位,其中 23 位表示分数,8 位本质上用作分数的指数,1 位表示数字的符号。
但机器学习研究人员很快了解到,在许多计算中,他们可以使用不太精确的数字,而他们的神经网络仍然会得出同样准确的答案。这样做的明显优点是,如果需要处理更少的位,则执行机器学习关键计算(乘法和累加)的逻辑可以变得更快、更小、更高效。(Dally 解释说,乘法所需的能量与位数的平方成正比。)因此,在 P100 中,Nvidia 使用 FP16 将这个数字减少了一半。谷歌甚至推出了自己的版本,名为bfloat16。(区别在于分数位的相对数量(提供精度)和指数位(提供范围)。Bfloat16 的范围位数量与 FP32 相同,因此更容易在两种格式之间来回切换。)
HASHKFK